
0506DOICoreSpecificationv1.doc Page 1 of 18

Core DOI Specification

Version 1.0 Approved by IDF Board 15 June 2005

Abstract

The Digital Object Identifier (DOI®) is a system for implementing an unambiguous
alphanumeric string, or identifier that references an intellectual property entity. The
syntax of the identifier numbering scheme is such that any identifier can be expressed in
a form suitable for use with the DOI system.

Resource provider

Input metadata

Term

RDM (Resouce
Metadata

Declaration)
DOI Resource DOI Resource

Term

Term

Term

Service metadata

Service user

Other metadata schemes
(e.g. ONIX, MPEG-RDD,

SCORM, MARC, ISO)

iDD (Indecs
Data

Dictionary)

RA
(Registration

Agency)

Flows of metadata within the RA network

RA
(Registration

Agency)

Figure 1 Top-level view of a DOI system

0506DOICoreSpecificationv1.doc Page 2 of 18

Outline:

Part A: Definition of a DOI system
Part B: Logical components of a DOI system
Part C: Syntax of a DOI
Part D: Resolution of a DOI
Part E: The Handle System®
Part F: The DOI Data Model
Part G: The responsibilities of a DOI Registration Agency
Part H: DOI Kernel
Part I: indecs Data Dictionary
Part J: DOI Resource Metadata Declaration
Part K: DOI Application Profile
Part L: DOI API
Part M: Registration of DOIs and metadata
Part N: DOIs and & OpenURL
Part O: Parameter Passing
Part P: Validation of DOIs
Part Q: Caveats

Part A. Definition of a DOI system

In the following description, the term "object" generally refers to an identifiable instance
of intellectual property.

The DOI system is, at its core, a system for implementing labels. It has the following
notable features:

� DOI is a persistent identifier

o A DOI differs from commonly used Internet pointers to material such as
the URL. A URL, when interpreted, refers to a particular IP address where
information specified, in part, by the URL can be retrieved. A DOI is a
reference to metadata about an object. This metadata serves to identify the
object. Thus, a DOI can be viewed as an identifier of an object, since
resolving a DOI results in metadata that identifies the object. This
metadata may include one or more URLs where the object may be located,
but may also include other information (described below).

� DOI is an actionable identifier
o The purpose of the DOI System is to make the DOI an actionable

identifier: a user can use a DOI to do something. The simplest action that a
user can perform using a DOI is to locate the object that it identifies.
Unlike a URL, however, a DOI can identify the object in greater detail
since resolving a DOI results in metadata. Sometimes the DOI will
necessarily resolve to metadata comprising the URL or network address of
the object that it identifies. But, this is not always the case. Since the DOI
is a reference to metadata, the DOI can be used to identify classes of

0506DOICoreSpecificationv1.doc Page 3 of 18

intellectual property – abstract “works”, physical “manifestations”,
performances – that cannot be directly accessed in a digital file. The DOI
System distinguishes what the DOI identifies from what the DOI may
resolve to. The technology used to manage the resolution of the DOI is the
Handle System (IETF RFCs 3650, 3651, 3652).

� DOI is an interoperable identifier
o A “legacy” identifier can form an integral part of a DOI identifier.
o DOIs are implemented using The Handle System: a protocol for general-

purpose distributed information systems designed to provide global name
services for use in networks such as the Internet.

o DOI uses for its optional object specification a DOI Data Model (a.k.a.
metadata) and the indecs Data Dictionary. The indecs Data Dictionary
includes a subset of the ISO MPEG 21 Rights Data Dictionary, ISO/IEC
21000-6. Together, the metadata and data dictionary provide to the DOI
system semantic interoperability with existing metadata element sets.

� DOI is a digital identifier of objects, not merely an identifier of digital objects.
o The indecs framework recognizes the concept of functional granularity. In

other words, the indecs framework makes it possible to identify an object
when there is a reason to distinguish it.. This is echoed in the DOI
treatment of an identified object: through the use of extensible metadata,
the identity of an object can be distinguished to the point necessary to
distinguish it. The Handle system used by DOI uses TCP/IP but avoids
the need to use the DNS.

� DOI supports multiple resolution
o The Handle System is unlike most other resolution technologies in

supporting multiple resolution. A DOI may have multiple data values of
different types associated with it (email addresses and URLs, for
example), and multiple data values of the same type (several URLs). The
same DOI can resolve to different data, depending on the way in which the
Handle System is queried.

Part B. Logical components of a DOI system

The DOI system has four logical components:

� Numbering (DOI syntax)
o assigning an identifier to the object that the DOI identifies.

� Description (Metadata)
o creating a description of the object that has been identified with DOI,

through the DOI Data Model,. with storage of such metadata within the
Handle system.

� Resolution
o making the identifier “actionable” by providing information about to what

the DOI should resolve
o retrieving metadata from the Handle System to deliver the services that

the actionable identifier can provide to users; and

0506DOICoreSpecificationv1.doc Page 4 of 18

o operating on the metadata in such a way as to provide specific services to
users.

� Policies:
o the rules that govern the operation of the system.

Part C. Syntax of a DOI

The DOI system uses as its naming syntax the NISO standard DOI syntax Z39.84, which
conforms to the functional requirements of the two generic approaches for naming
entities on the Internet: the Uniform Resource Name (URN) and the Uniform Resource
Identifier (URI).

The DOI has two components, known as the prefix and the suffix. These are separated by
a forward slash. The two components together form the DOI:

10.1000/123456

In this example, the prefix is “10.1000” and the suffix is “123456” There is no technical
limitation on the length of either the prefix or the suffix; in theory, at least, there is an
infinite number of DOIs available.

The prefix itself has two components. All DOIs start with “10.” This distinguishes a DOI
from any other implementation of the Handle System. The next element of the prefix is
the alphanumeric string that is assigned to an organization that wishes to register DOIs.
The prefix may be further divided into sub-prefixes, for example:

10.1000.10/123456

The DOI is an opaque string (a dumb number). No definitive information can or should
be interpreted from the number in use. In particular, the fact that the DOI has a prefix
issued by a particular organization should not be used to identify the owner of any given
intellectual property – the DOI remains persistent through ownership changes, and the
prefix is unaltered.

Following the prefix (separated by a forward slash) is a suffix that is unique to the prefix.
The combination of a prefix for the Registrant and unique suffix provided by the
Registrant avoids any necessity for the centralized allocation of DOI numbers. The
unique suffix may be generated by a system used by the Registrant.

The DOI suffix can be any alphanumeric string that the Registrant chooses. This can
simply be a sequential number, or it can make use of an existing (legacy) identifier. An
example of a legacy identifier is an ISBN.

The issuing of unique prefixes to Registrant organizations places the onus on those
organizations to ensure that the DOIs that they are registering are indeed unique.

0506DOICoreSpecificationv1.doc Page 5 of 18

The DOI is case insensitive and may incorporate any printable characters from the
Universal Character Set (UCS-2), of ISO/IEC 10646, which is the character set defined
by Unicode v2.0.

Part D. Resolution of a DOI

Objects identified by a DOI may be of any form, including abstractions (e.g. as identified
by ISTC). Resolution is the process of submitting a DOI to a network service and
receiving in return one or more pieces of current information related to the identified
object.

The DOI uses the Handle System to implement resolution. The resolution of a DOI (e.g.
10.1000/140) results in one or more pieces of typed data (“associated values”). Examples
of typed data are a URL, an e-mail addresses, another DOI, and metadata.

Figure 2 Example of DOI to URL single resolution

Figure 3 General DOI Resolution Schematic

Figure 3 is a schematic showing the data flow between the actors involved in DOI
resolution. First, on behalf of a user a client application makes a resolution request to a
DOI Resolver that performs a specific function and understands the interface with the
client application. Second, the DOI Resolver retrieves metadata from the Handle system
for the DOI that is the subject of the resolution request. Third, the DOI Resolver acts
upon the DOI metadata and any additional metadata provided in the resolution request
and produces an appropriate outcome.

Using multiple resolution, a DOI can be resolved to an arbitrary number of different
associated values. Resolution requests may return all associated values of current

Handle

DOI
Resolver

Client
Application Outcome

Resolution
Request

metadata
retrieval

DOI Resolution

Resolver
Output

0506DOICoreSpecificationv1.doc Page 6 of 18

information, individual values, or all values of one data type. These associated values can
be displayed in a menu in a client application, from which the user may select the desired
value. Moreover, a client application may deliver messages to a user wherein the
messages are constructed from a syntax that allows the user to select the desired value. In
addition these values may be processed automatically to achieve the objective of the
resolution system.

Current Web browser technology requires additional functionality to allow the browser to
make full use of DOIs: additional browser features are necessary. It is anticipated that
features supporting resolution will commonly be built into browsers in the future.

There is a freely available “resolver plug in” that can be downloaded from
http://www.handle.net/resolver/. For both Netscape and Microsoft IE browsers, the plug-
in extends the browser's functionality so that it understands the Handle protocol.

Alternatively, without the need to extend the Web browsers' capability, DOIs may be
structured to use the default public DOI proxy server (http://dx.doi.org). The resolution of
the DOI in this case depends on the use of URL syntax. For example, “doi:10.123/456”
would be written as http://dx.doi.org/10.123/456.

Part E. The Handle System

Background: The Handle System is a general-purpose distributed information system
designed to provide an efficient, extensible, and secured global name service for use on
networks such as the Internet. The Handle System includes an open set of protocols, a
namespace, and a reference implementation of the protocols. The protocols enable a
distributed computer system to store names, or handles, of digital resources and resolve
those handles into the information necessary to locate, access, and otherwise make use of
the resources. These associated values can be changed as needed to reflect the current
state of the identified resource without changing the handle, thus allowing the name of
the item to persist over changes of location and other current state information. Each
handle may have its own administrator(s) and administration can be done in a distributed
environment. The name-to-value bindings may also be secured, allowing handles to be
used in trust management applications..

Within the DOI system, an implementation of the Handle System is used for DOI
resolution. The Handle System is a protocol specification. An implementation of a
Handle System is made up of local handle services (LHS). A local handle service is made
up of one or more sites. A site is made up of one ore more handle servers. Handle servers
store handles.

One local handle service is unique, the Global Handle Registry®: the handles it stores,
which are the naming authority handles, makes it the LHS to query to find out which
services store all the other handles.

0506DOICoreSpecificationv1.doc Page 7 of 18

Part F. DOI Data Model

Metadata may include names, identifiers, descriptions, types, classifications, locations,
times, measurements, relationships and any other kind of information related to a
Resource.

Figure 4 Flows of metadata in and out of an RA

There are two ways in which every DOI Registration Agency (RA) is bound to deal with
metadata. An RA will gather input metadata from Resource providers; and an RA will
need to provide some level of output or service metadata to support DOI services. Input
metadata will provide some, but not necessarily all, of the service metadata. In some
cases, a metadata declaration will itself be a complete DOI service (for example, “provide
an ONIX Product message for this Resource”). These two flows of metadata declarations
are illustrated in Figure 4.

DOI policy places no restrictions on the form and content of an RA’s input and service
metadata declarations, except insofar as input metadata must support the minimum
requirements implicit in the DOI Kernel (see below). RAs may specify their own
metadata schemes and messages, or use any existing schemes in whole or part for their
input and service metadata declarations.

Part G. The responsibilities of a DOI Registration Agency

RAs are responsible for the administration an operation of the DOI system in the
following areas:

� The RA must provide a service for the initial registration and subsequent
maintenance of DOIs and their metadata into the Handle system.

� Should the RA choose to operate its own resolution service, such service must at a
minimum perform the same functions as the public default resolution service at
http://dx.doi.org

0506DOICoreSpecificationv1.doc Page 8 of 18

� Should the RA choose to operate its own Local Handle Server such operation
must comply with IDF specified procedures including the right of the IDF to
operate backup servers for the RA’s content hosted on their Local Handle Server.

� An RA must support the distributed deployment of the public default resolution
service as specified by the IDF.

� An RA must be capable of producing a Kernel Metadata Declaration (a.k.a. DOI
Kernel, see below) for each DOI issued. Metadata exchanged between RAs
supporting DOI services should be exchanged using an agreed DOI Resource
Metadata Declaration (RMD, see below) for the Resource or Service type.
Proprietary terms (data elements and values) used by RAs in Kernel and Resource
Metadata Declarations should be registered in the IDF’s data dictionary (iDD).

Part H: DOI Kernel

The DOI Kernel, which is formally specified in an XML schema, answers a number of
basic questions about the identified Resource (see Figure 5).

Questions about the Resource Kernel element(s)
What is the DOI being allocated? DOI

Is it commonly referenced with another identifier
(e.g. an ISBN)? resourceIdentifier(s)
What is it usually called? resourceName(s)

Who is principally responsible for its creation or
publication? What role did they play?

principalAgent(s),
agentRole(s)

Is it a physical fixation, a digital fixation, a
performance, or an abstract work? StructuralType

How is it perceived -- is it audio, visual,
audiovisual, or abstract? mode(s)

What particular kind of Resource is it? (e.g. an
audio file, scientific journal, musical composition,
dataset, serial article, eBook, pdf etc) ResourceType

Figure 5 Kernel Elements

There may also be a few questions about the issuing of the DOI and Kernel itself (see
Figure 6).

Questions about the Resource Kernel element(s)
Which RA issued this DOI? RegistrationAgency
When was this Kernel issued? IssueDate
Which version is it? IssueNumber

Figure 6 Administrative Kernel Elements

0506DOICoreSpecificationv1.doc Page 9 of 18

Values of some Kernel elements (names and identifiers) are simply alphanumeric strings.
The other elements are drawn from sets of allowed values: for example, an agentRole
might be “Publisher”, “Composer” or “Distributor”.

Two Kernel elements (StructuralType and mode) have a small, prescribed set of allowed
values which all RAs must recognize. For the other elements and sub-elements, RAs may
use their own choice of values, and add to them as and when required. These value sets
must be registered in the data dictionary (iDD) for mapping purposes, so that any
application using Kernel metadata from more than one source may be capable of
presenting an integrated set of values to its users. The Kernel Declaration described here
applies to resources in the form of Creations (items of intellectual property which
represent the scope of early DOI implementation).

 Part I. indecs Data Dictionary

The indecs Data Dictionary (iDD) is the repository for all data elements and allowed
values used in Kernel Metadata declarations and Resource Metadata Declarations
(RMDs, see below).

The iDD enables the definition and ontology of all metadata elements to be available to
all RAs, and provides the necessary mappings to support metadata integration and
transformations required for data interchange between RAs.

iDD is a structured ontology compliant with logical axioms and constructors common to
ontology languages such as W3C’s OWL (Web Ontology Language). It can, for example,
support the production of legal OWL ontologies. All allowed values used by an RA in its
Kernel Metadata, and all data elements used by an RA when mapping to an RMD, must
be registered in the iDD.

Part J. DOI Resource Metadata Declaration

A DOI Resource Metadata Declaration (RMD) is a message designed specifically for
metadata exchange between DOI RAs. An RMD is in the form of an XML document
which conforms to an XML Schema (xsd). All its elements and allowed values are
mapped into the iDD.

0506DOICoreSpecificationv1.doc Page 10 of 18

Figure 7 RMD basic element classes

The RMD uses a generic metadata structure of ten basic data element classes, developed
from the indecs framework model. Figure 7 shows the ten RMD basic elements, and to
which class each of the more specialized Kernel elements belong.

RMDs may incorporate data elements, allowed values, codes and composites from any
other standard or proprietary message or metadata schemes (for example ONIX, SCORM
or MARC) and draws on standard ISO codes and formats for Languages, Territories,
Currencies, Measures and Dates and Times.

All element types and allowed values for an RMD are registered in the iDD. Every RA
wishing to make use of an RMD must register the corresponding data elements and
values in its own database to ensure reliable mapping by other RAs.

RAs are free, of course, to use existing standards to communicate metadata between them
where they are suitable. If, for example, two RAs are providing services requiring ONIX
metadata, then it would be expected for one to provide ONIX messages to the other.

An RMD is developed with contributions from two or more RAs. RMDs are available for
use by any RA. Any RA making use of a specific RMD may contribute to the editorial
development of the RMD. An RMD will include the metadata elements required for all
nominated services by any participating RA. Specific data elements within an RMD may
be required only for specific RAs or Application Profiles, enabling the same RMD to be
used flexibly within a community.

0506DOICoreSpecificationv1.doc Page 11 of 18

Part K. DOI Application Profile

Each DOI is associated with one or more Application Profiles, and each AP is associated
with one or more defined Services.

A Service is simply a defined result from a defined action, i.e., do X and the result will be
Y. One of the services, possibly the only one for some DOIs, is the provision of kernel
metadata for each DOI. Other sets of metadata may also be available for some DOIs and
this, as with other services, would be known through the inclusion of a given DOI in an
AP and the association of that AP with the given service.

Each AP is itself identified by a DOI, e.g. DOI:10.profile/7, and it is that DOI, instead of
each of the content level DOIs, that is directly associated with the set of services relevant
to each member of its set.

Each of the registered services is also identified by a DOI, e.g. 10.Service/3. Associated
with each service is a natural language description of the service plus one or more
interface descriptions (e.g., Interface Definition Language, Web Services Definition
Language, or bindings and other information needed for using the service). The same
service could be used by multiple APs through the simple mechanism of registering the
service under multiple APs, just as a single AP will be ‘used’ by multiple DOIs.

APs may themselves be grouped into APs, i.e., they can be nested. This makes it possible
to group them together for greater levels of indirection yet still maintain the flexibility to
create new grou pings and associations as needed

Part L. DOI API

As procedures and structures are added for layering DOI information over the handle
system it becomes increasingly important to define those procedures and structures in a
separate layer. In other words, the added complexity of APs and Services requires the
formal definition of a separate DOI layer.

0506DOICoreSpecificationv1.doc Page 12 of 18

Figure 8 DOI Application Profile Framework

Figure 8 shows an abstract view of this model, which has also been referred to as the
Application Profile Framework. DOIs are linked into Application Profiles. Any single
DOI can be a member of multiple APs. Each AP can be linked into multiple Services.
That linkage is to one or more specific instances of a Service. Each defined Service can
be made available in multiple ways, referred to as instances. This makes it possible to add
a Service to many DOIs by adding that Service to relatively few APs.

This framework is implemented in the handle system, using DOIs for both APs and
Services and linking them together through typed handle values.

APIs (application programming interfaces) have been created that abstract out the details
of the handle system implementation and make it possible to administer the structures
and to use them in applications while ignoring the details of the implementation. They
provide “hooks” down into the handle system without manipulating the handle records
directly.

0506DOICoreSpecificationv1.doc Page 13 of 18

Figure 9 DOI Application Profile Data Model

Figure 9 shows the DOI data model from the API perspective. Here the details of the way
in which DOIs, APs, and Services are connected is hidden from the application developer
who is provided instead with methods for retrieving APs and Services associated with a
given DOI.

Part M. Registration of DOIs and metadata

Registration Agencies support registration of DOIs with associated metadata declaration,
i.e. using a DOI Application Profile. Individual Registration Agencies will develop their
own workflow and procedures for the management of DOI registration, and metadata
deposit and maintenance. The following procedures are representative:

Registering DOIs: The following procedure is as an example of a process
that could be used by an individual Registration Agency for the
registration of a DOI with declared metadata.

0506DOICoreSpecificationv1.doc Page 14 of 18

This procedure allows for the batch registration of DOIs and associated
metadata records into a DOI Central Metadata Directory run by the
Registration Agency; this directory can subsequently be queried. The
batch file format currently in use is XML as defined by a specific XML
Schema, and submission is via HTTP POST. Security is HTTP basic
authentication; PGP encryption will be added later. Batch receipt is
confirmed to the sender via email.

Metadata Creation: The Registrant prepares XML batch files in
accordance with the Schema; these are further constrained by a set of rules
for the data, which define the expected content of each metadata element.
An XML batch may contain metadata for hundreds of DOIs.

The development and implementation of quality control measures used to
ensure the validity of the metadata content are the responsibility of the
Registrant. Quality control and data checking can be assisted by processes
put in place in the RA's metadata collection process.

Metadata Collection: The XML is validated upon receipt against the
Schema. If the XML does not parse, the batch is refused; the Registrant
must correct the XML and resubmit the batch.

XML batches are submitted to a named HTTP server via HTTP POST to a
Java "servlet", which parses and validates the XML file, and notifies the
Registrant in real time whether or not the XML is valid and has been
accepted. The submission process captures and verifies a DOI System
prefix holder login and password prior to validating the XML. The XML
files themselves contain timestamps used as identifiers of the batch;
should the Registrant so wish, each DOI record may have its own
timestamp.

DOI Deposit: The servlet then deposits each DOI and its corresponding
URL into the DOI System, adding timestamp data value. If the DOI is not
new and therefore already exists in the DOI System, the timestamp is key
to determining whether the DOI data being contributed is newer than the
data that is already in the system; if so, the existing DOI data is updated. A
log file also written in XML is created for each batch, indicating the total
number of DOI records in the batch, the number of successful deposits
into the DOI System, and the number of failures. For each failure, the DOI
is provided, along with the reason for the failure. While DOI System
failures may be the result of system errors, they are most typically caused
by an attempt to overwrite existing DOI data with older data.

Metadata Database Record Generation: The original XML batch files,
along with the log files for the batches, are made available daily to the

0506DOICoreSpecificationv1.doc Page 15 of 18

metadata database deposit process, where they are indexed and then made
available for searching. A final XML log file is generated to indicate the
success of the database deposit (again, failures are due primarily to
network or system errors) combined with those from the DOI deposit
process, and this combined XML batch diagnostic is emailed to the
Registrant.

The entire metadata collection process is expected to be completed and
reported to the Registrant in as close to real time as possible; 24 hours is
currently seen as a reasonable target time. However, when Registrants
initially make deposits, there are large amounts of legacy material and
coordination is needed on when the legacy batches are deposited or system
performance can be affected.

Data Querying: The metadata database (MDDB) may be queried by
submitting a batch file of known metadata fields in a specified format,
currently pure ASCII text on separate lines, with fields delimited by
vertical bars. The batch interface will query the database and return the
corresponding DOIs (if known), or a diagnostic message. Batch query files
are submitted by HTTP POST to a named HTTP server.

An RA has the authority to register a DOI and associated metadata to provide services
that exist in repositories outside the DOI handle system. For example, an RA may register
DOIs with URLs and some basic metadata in the DOI Handle system while keeping
another set of metadata in its own repository.

Part N. DOIs & OpenURL

Background
The OpenURL Framework is a syntax for transporting metadata and/or identifiers about
an object, using an established set of parameter names, to enable context-sensitive linking
for the development of user-specific services. It is under development as a NISO
standard, OpenURL Framework, Z39.88. The Proposed Standard, Registry, and KEV
Implementation Guidelines are available from NISO Committee AX.

The OpenURL Framework includes DOI as one of its registered Namespaces and DOIs
are widely used in OpenURL implementations. This documentation references only part
of the OpenURL Framework Registry. More references to OpenURL and the DOI Proxy
Server will be found in the documentation on Parameter Passing.

The DOI Proxy Server and OpenURL
In the OpenURL Format, descriptions of referenced resources, and descriptions of the
associated resources that explain the context of the resource, are contained in
ContextObjects that are transported using the HTTP protocol. ContextObjects use a

0506DOICoreSpecificationv1.doc Page 16 of 18

Key/Encoded-Value format to create a string of ampersand-delimited pairs. The values
must be URL-encoded.

Of the five ContextObject Entities, one of them, the Referent, is required. Within the
scholarly information community, the Referent will likely be a journal or journal article,
a conference proceeding, or a book. The Identifier for the Referent is its DOI.

The DOI Proxy Server is a web server that understands the Handle System protocol. It is
not an OpenURL Resolver per se, and does not provide services to an end-user that
pertain to the Referent within the ContextObject of the OpenURL. When it receives an
OpenURL, it finds the DOI in the string, resolves it, and re-directs the end-user's browser
to that URL, ignoring all other ContextObject Entities.

The default syntax for a DOI resolution request to the DOI Proxy Server is:

 http://dx.doi.org/10.1000/demo_DOI

The same DOI resolution request using OpenURL would be:

 http://dx.doi.org/openurl?url_ver=Z39.88-2003&rft_id=doi:10.1000/demo_DOI

The OpenURL Format standard has been approved by the NISO voting members and is
being readied for publication

Part O. Parameter Passing

Background
Before the DOI System and CrossRef came into existence, the scholarly publishing
community implemented bilateral linking agreements that used parameters (name/value
pairs) included in standard URLs to exchange data. This practice enabled them to gather
information about requests coming to their sites, such as which other publisher's site a
request came from, and from which journal and article. They could then implement
special access rules, or establish pricing for their content based on who was requesting it.

At the time that the publishers began using DOIs, they also began thinking about how
DOIs and the DOI Proxy Server could be used to facilitate the exchange of parameters,
and remove the need for individual bilateral linking arrangements. A procedure, evolved
over several years time, was agreed on by publishers who are now members of CrossRef,
implemented in the DOI Proxy Server, and has come to be called 'Parameter Passing'.

The DOI Proxy Server and Parameter Passing
In Parameter Passing, there are two URLs involved, both of which may be query strings
and/or include parameters: (1) the resolution request sent by the 'referrer' to
http://dx.doi.org/ that has the DOI, and (2) the URL associated with that DOI, registered
in the DOI System by the 'referent'. Parameter Passing requires joining the query strings

0506DOICoreSpecificationv1.doc Page 17 of 18

of those two URLs together to form an 'out-bound' link. The names of the parameters
used in both strings must be unique and defined for all parties. The OpenURL Format
was chosen for the URLs because it specifies a set of parameter names that can be used to
eliminate the chance of naming conflicts. (See "Parameter Passing Via the DOI Proxy"
for the OpenURL parameters applicable for use in Parameter Passing, and the specific
Common CrossRef Parameter Set.)

The DOI Proxy Server accepts a resolution request in the form of an OpenURL. (See the
separate document OpenURL for more information.) For example:

 http://dx.doi.org/openurl?url_ver=z39.88-2003&rfr_id=ori:rid:crossref.org&rft_id=
doi:10.1256/003590&rfr_dat=cr_setver%3d01%26cr_pub%3dSource%20Publisher%26c
r_work%3dSource %20Journal%20Title%26cr_src%3dSRC-NAME

would be recognized by the proxy server as a Parameter Passing request. It will resolve
the DOI, and then check the domain of the URL against an 'opt-in' list that identifies
organizations participating in Parameter Passing.

If the URL is not in the opt-in list, the proxy server will redirect the user's browser to the
registered URL. If the URL is in the opt-in list, the proxy server will construct a new
URL as follows:

 * Replace the registered URL's domain name and/or port number with different values,
if replacements are specified in the opt-in list.

 * Move all the parameters from the in-bound link to the out-bound link, except for the
rft_dat parameter.

 * For the rft_dat parameter, if the registered URL is an OpenURL, move the rft_dat
parameter to the out-bound link. If it is not already in OpenURL format, hexencode the
entire query string in the URL and place it into the out-bound link as the value of the
rft_dat parameter.

The referent is assumed to have implemented a service capable of using the nested
parameters. The assumption is that by agreeing to participate in Parameter Passing, a
publisher will accept any and all parameters identified in the Common CrossRef
Parameter Set.

Part P. Validation of DOIs

Objects identified using the DOI System are subject to verification. This may include an
RA taking an action to determine whether the successful resolution of a DOI is possible.
The determination reached by the action may be stored in the metadata associated with
the DOI. A subsequent action by an RA may reveal that a previously resolvable DOI is
no longer resolvable or vice versa. In response to this new information, a prior

0506DOICoreSpecificationv1.doc Page 18 of 18

determination of the DOIs resolvable status may be deleted from the metadata associated
with the DOI. Alternatively, the new information may be stored in metadata associated
with the DOI.

Metadata used within the DOI System is also subject to verification. For example, during
the update of metadata, an RA verifies the timestamp of the metadata to discern a time-
forward update from a time-backward update.

RAs support the verification of a participant in the DOI System. This verification may
comprise capturing and verifying the participant’s credentials. The credentials may
comprise a username and password.

The DOI System allows vendors of content in electronic form to control the material and
restrict its usage in various ways that can be specified by the vendor.

Part Q. Caveats

This is a draft document.

